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Problem statement

Probability sampling is the gold standard for finite population inference.

The 21st century witnesses re-emerging non-probability sampling.

1 The response rate is steadily declining.

2 Massive unstructured data are increasingly available.

3 Convenience samples are easier, cheaper and faster to collect.

4 Rare events, such as crashes, require long-term followup.
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Naturalistic Driving Studies (NDS)

One real-world application of sensor-based Big Data.

Driving behaviors are monitored via instrumented vehicles.

A rich resource for exploring crash causality, traffic safety,
and travel dynamics.

NDS

VEHICLE

TRIP

DRIVER

EVENT
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Strategic Highway Research Program 2

Launched in 2010, SHRP2 is the largest NDS conducted to date.

Participants were ∼3,150 volunteers from six sites across the U.S.

∼5M trips & ∼50M driven miles were recorded.
(Trip? time interval during which vehicle is on)

Major challenges:

1 SHRP2 is a non-probability sample.

2 Youngest/eldest groups were oversampled.

3 Only six sites have been studied.
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Basic framework

Let’s define the following notations:

1 B: Big non-probability sample

2 R: Reference survey

3 X : Set of common auxiliary vars

4 Y : Outcome var of interest

5 Z : Indicator of being in B

Considering MAR+positivity assumptions given X :

1 Quasi-randomization (QR):
Estimating pseudo-inclusion probabilities (πB) in B

2 Prediction modeling (PM):
Predicting the outcome var (Y ) for units in R

3 Doubly robust Adjustment (DR):
Combining the two to further protect against model misspecification

Let combine B with R and define Zi = I (i ∈ B).

Combined sample
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Quasi-randomization

Traditionally, propensity scores are used to estimate pseudo-weights (Lee 2006).

PS weighting when R is epsem:

ȳPW =
1

N

nB

∑
i=1

yi
πB(xi )

where under a logistic regression model, we have

πB(xi ) ∝ pi (β) = P(Zi = 1|xi ; β) =
exp{xTi β}

1 + exp{xTi β}
, ∀i ∈ B

When R is NOT epsem, β can be estimated through a PMLE approach by solving:

1 ∑i∈B xi [1− pi (β)]−∑i∈R xipi (β)/πR
i = 0 (odds of PS) (Wang et al. 2020)

2 ∑i∈B xi −∑i∈R xipi (β)/πR
i = 0 (Chen et al. 2019)

3 ∑i∈B xi/pi (β)−∑i∈R xi/πR
i = 0 (Kim 2020)
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Quasi-randomization

However, the PMLE approach is limited to the parametric models.

One may be interested in applying more flexible non-parametric methods.

Denote δi = δBi + δRi . With an additional assumption B ∩ R = ∅, one can show

πB
i = P(δBi = 1|xi , πR

i ) = P(δi = 1|xi , πR
i )P(Zi = 1|xi , πR

i )

πR
i = P(δRi = 1|xi , πR

i ) = P(δi = 1|xi , πR
i )P(Zi = 0|xi , πR

i )

Propensity Adjusted Probability weighting (PAPW):

πB
i (x

∗
i ; β∗) = πR

i

pi (β∗)

1− pi (β∗)
, ∀i ∈ B

where x∗i = [xi , πR
i ], and β∗ can be estimated through the regular MLE.

This is especially advantageous when applying a broader range of predictive methods.
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Quasi-randomization

Under certain regularity conditions, one can prove that ˆ̄yPW = ȳU +Op(n
−1/2
B ).

When πR
i is unknown for i ∈ B, Elliott & Valliant (2017) show that

Propensity Adjusted Probability Prediction (PAPP):

πB
i (xi ; β, γ) = P(δRi = 1|xi ; γ)

pi (β)

1− pi (β)
, ∀i ∈ B

where γ is the vector of parameters in modeling δRi on xi .

To predict P(δRi = 1|xi ; γ) for i ∈ B, one can model πR
i on xi instead of δRi because

P(δRi = 1|xi ) =
∫ 1

0
P(δRi = 1|πR

i , xi )P(π
R
i |xi )dπR

i

=
∫ 1

0
πR
i P(π

R
i |xi )dπR

i = E (πR
i |xi ) i ∈ R
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Doubly robust adjustment

Augmented Inverse Propensity weighting (AIPW) was proposed by Robins et al (1994).

Chen et al (2019) extend AIPW to a non-probability sample setting

ˆ̄yDR =
1

N

nB

∑
i=1

{yi −m(xi ; θ)}
πB
i (xi ; β)

+
1

N

nR

∑
j=1

m(xj ; θ)

πR
j

where m(.) is a continuous differentiable function w.r.t. θ.

Parameteres η = (β, θ) are estimated by simultaneously solving (Kim & Haziza 2014):

∂

∂β
[ȳDR − ȳU ] =

1

N

N

∑
i=1

δBi

[
1

πB
i (xi ; β)

− 1

]
{yi −m(xi ; θ)}xi = 0

∂

∂θ
[ȳDR − ȳU ] =

1

N

N

∑
i=1

δBi
πB(xi ; β)

ṁ(xi ; θ)−
nR

∑
i=1

ṁ(xi ; θ)

πR
i

= 0
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Adjusted DR estimator

However, if both QR and PM are incorrectly specified, the estimates are still biased.

To avoid using PMLE, we recommend using PAPW/PAPP approach for predicting πB
i .

Proposed AIPW estimator when πR
i is calculable for i ∈ B :

ȳDR =
1

N

nB

∑
i=1

1

πR
i

[
1− pi (β∗)

pi (β∗)

]
{yi −m(x∗i ; θ∗)}+ 1

N

nR

∑
j=1

m(x∗j ; θ∗)

πR
j

where θ∗ is the vector of parameters associated with x∗i = [xi , πR
i ].

Assuming that yi is observed for i ∈ R, denote ȳR = N−1 ∑nR
i=1 yi/πR

i . We have

ȳDR − ȳR =
1

N

n

∑
i=1

1

πR
i

[
Zi

pi (β∗)
− 1

] {
yi −m(x∗i ; θ∗)

}
which is identical to what Kim & Haziza (2014) derived for incomplete data inference.
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Adjusted DR estimator

Therefore, under GLM, we recommend estimating η∗ = (β∗, θ∗) by solving:

∂

∂β∗
[ȳDR − ȳR ] =

1

N

n

∑
i=1

Zi

πR
i

[
1

pi (β∗)
− 1

]
{yi −m(x∗i ; θ∗)}x∗i = 0

∂

∂θ∗
[ȳDR − ȳR ] =

1

N

n

∑
i=1

1

πR
i

[
Zi

pi (β∗)
− 1

]
ṁ(x∗i ; θ∗) = 0

Under some regularity conditions, one can prove that ˆ̄yDR = ȳDR +Op(n−1/2).

Note that using πR
i as a predictor in m(.) further weakens the modeling assumption.

Proposed AIPW estimator when πR
i is unknown for i ∈ B :

ȳDR =
1

N

nB

∑
i=1

1

πR
i (xi ; γ)

[
1− pi (β)

pi (β)

]
{yi −m(xi ; θ)}+ 1

N

nR

∑
j=1

m(xj ; θ)

πR
j
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Bayesian Additive Regression Trees (BART)

BART is a flexible sum-of-trees regression method (Chipman et al 2010).

BART structure:

yi =
m

∑
j=1

f (xi ,Tj ,Mj ) + εi

where εi ∼ N(0, σ2) and Tj is the jth tree with Mj being terminal node parameters.

BART is Bayesian assigning prior distributions to T (length & decision rules), M, and σ.

Considering independent structure between trees:

p[(T1,M1), ..., (Tm,Mm), σ−2] = [
m

∏
j=1

{
bj

∏
i=1

P(µij |Tj )}P(Tj )]P(σ
−2)

Given the data, posterior distribution is simulated using a backfitting MCMC method.
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Bayesian Additive Regression Trees (BART)

Advantages of BART: automatic variable selection, quantifying uncertainty using PPD.

For a binary outcome, BART uses a data augmentation approach to transform Y into R.

Extending the modified DR method using BART:

log(
πR
i

1− πR
i

) = k(xi ) + εi , Φ−1[P(Zi = 1|xi )] = h(xi ), yi = f (xi ) + εi

For a given MCMC draw, m (m = 1, 2, ...,M), we have

ˆ̄y (m)
DR =

1

N̂B

nB

∑
i=1

{
1 + exp[k̂ (m)(xi )]

exp[k̂ (m)(xi )]

}{
1−Φ[ĥ(m)(xi )]

Φ[ĥ(m)(xi )]

}{
yi − f̂ (m)(xi )

}
+

1

N̂R

nR

∑
j=1

f̂ (m)(xj )

πR
j

Final AIPW estimator under BART: ˆ̄yDR =
1

M

M

∑
m=1

ˆ̄y (m)
DR
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Variance estimation

To estimate variance, one has to incorporate uncertainty due to sampling, imputing
pseudo-weights, and predicting the outcome. Two methods are proposed:

Asymptotic variance estimator when πR
i is known for i ∈ B

For pseudo-weighting approach based on PAPW:

V̂ar ( ˆ̄yPW ) =
1

N2

nB

∑
i=1

{
1− π̂B

i

}( yi − ˆ̄yPW
π̂B
i

)2

− 2
b̂T

N2

nB

∑
i=1

{
1− pi (β̂1)

}( yi − ˆ̄yPW
π̂B
i

)
xi + b̂T

[
1

N2

n

∑
i=1

pi (β̂1)xix
T
i

]
b̂

where b̂T =

{
1
N ∑nB

i=1

(
yi− ˆ̄yPW

π̂B
i

)
xTi

}{
1
N ∑n

i=1 pi (β̂1)xix
T
i

}−1

For the modified AIPW estimator (Chen et al 2019):

V̂ar( ˆ̄yDR ) = V̂1 + V̂2 − B̂(V̂2)

where

V̂1 = V̂ar ( ˆ̄yPM ), V̂2 =
1

N2

nB

∑
i=1

[
1− π̂B

i

(π̂B
i )

2

]
{yi −m(x∗i ; θ̂1)}2, B̂(V̂2) =

1

N2

n

∑
i=1

[
Zi

π̂B
i

− 1− Zi

πR
i

]
σ̂2
i
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[
1

N2

n

∑
i=1

pi (β̂1)xix
T
i

]
b̂

where b̂T =

{
1
N ∑nB

i=1

(
yi− ˆ̄yPW

π̂B
i

)
xTi

}{
1
N ∑n

i=1 pi (β̂1)xix
T
i

}−1

For the modified AIPW estimator (Chen et al 2019):

V̂ar( ˆ̄yDR ) = V̂1 + V̂2 − B̂(V̂2)

where

V̂1 = V̂ar ( ˆ̄yPM ), V̂2 =
1

N2

nB

∑
i=1

[
1− π̂B

i

(π̂B
i )

2

]
{yi −m(x∗i ; θ̂1)}2, B̂(V̂2) =

1

N2

n

∑
i=1

[
Zi

π̂B
i

− 1− Zi

πR
i

]
σ̂2
i
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Variance estimation

Variance estimation when πR
i is incomputable for i ∈ B:

Under GLM:
A modified bootstrap resampling method (Rao & Wu, 1991)

1 Draw M bootstrap samples of sizes nB − 1 and nR − 1 from B and R to estimate ˆ̄y (m)
DR ’s.

2 Update the sampling weights in R to w
(m)
i = wi

nR
nR−1 ti .

V̂ar( ˆ̄y (m)
DR ) =

1

M

M

∑
m=1

[
ˆ̄y (m)
DR − ¯̄yDR

]2

Under BART:

A multiple imputation method using the posterior predictive draws

1 Randomly select a sample of size M from posterior predictive draws, and estimate ˆ̄y (m)
DR .

2 Use Rubin’s combining rules to construct point/variance estimates.

V̂ar( ˆ̄yDR ) = V̄W + (1 + 1/M)VB

where V̄w = ∑M
m=1 var{ ˆ̄y (m)

DR }/M and VB = ∑M
m=1[ ˆ̄y

(m)
DR − ¯̄yDR ]

2/(M − 1)
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Simulation study I (Chen et al 2019)

A pop. of size N = 1, 000, 000 was generated with the following variables:

z1i ∼ Ber (p = 0.5) z2i ∼ U(0, 2) z3i ∼ Exp(µ = 1) z4i ∼ χ2
(4)

x1i = z1i x2i = z2i + 0.3z1i x3i = z3i + 0.2(x1i + x2i ) x4i = z4i + 0.1(x1i + x2i + x3i )

Y is a continuous outcome with normal distribution as below:

Yi = 2 + x1i + x2i + x3i + x4i + 0.5εi where εi ∼ N(0, 1)

Two sets of unequal selection probabilities, are generated as below:

πR
i ∝ γ1 + z3i , log

(
πB
i

1− πB
i

)
= γ0 + 0.1x1i + 0.2x2i + 0.1x3i + 0.2x4i

The simulation was iterated K = 1000 times, and rel-Bias, rMSE, 95%CI coverage rates
and SE ratio were computed.

Different scenarios of model misspecification were examined.
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Simulation results I

The simulation results for nR = 100 and nB = 1, 000
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Simulation study II

A clustered pop. of size A = 1, 000 and nα = 1, 000 was generated as below:(
X1α

Dα

)
∼ MVN(

(
1
0

)
,

(
1 0.8
0.8 1

)
) , X2α ∼ Ber (p = 0.5)

Y is a continuous outcome with normal distribution as below:

Yαi |Xα, dα ∼ N(µ = 2 + 0.4x21α + 0.3x31α − 0.2x2α − 0.1x1αx2α − dα + uα, σ2 = 1)

Two sets of unequal selection probabilities, are generated as below:

P(δRα = 1|d) = eγ0+0.5dα

1 + eγ0+0.5dα
, P(δBα = 1|x) = eγ1+0.4x1α−0.2x2

1α+0.6x2α+0.1x1αx2α

1 + eγ1+0.4x1α−0.2x2
1α+0.6x2α+0.1x1αx2α

The simulation was iterated K = 1000 times, and rel-Bias, rMSE, 95%CI coverage rates
and SE ratio were computed.

Different scenarios of model misspecification were examined.
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Simulation results II

The simulation results for nRα = 100 and nBα = 50 and a = 200:
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Simulation results II
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Simulation results II

The simulation results for nRα = 100 and nBα = 50 and a = 200:

● ● ●

●

●

70

80

90

True−True

True−False

False−True

False−False

co
v 

ra
te

 (
%

)

95%CI cov rate for Y

●

●

●

●

●

0.9

1.0

1.1

1.2

1.3

True−True

True−False

False−True

False−False
S

E
 r

at
io

Method
● PAPW

PAPP
IPSW

Model
●
●

BART
GLM

SE ratio for Y

Rafei, Ali (MPSM) Robust Inference for Non-Probability Samples JSM 2020 23 / 35



Results on SHRP2: reference survey

The 2017 National Household Travel Survey (NHTS) as the reference survey

A nationally representative survey of U.S. citizens aged ≥ 5 years (nR = 129, 112)

An address-based sample with a stratified design.

Initial recruitment through mailing (RR: 30.4%)

Responded HH assigned randomly to weekdays

Travel log using web/telephone (RR: 51.4%)

NHTS data were combined with SHRP2 data
at the day level (nB = 874, 211)
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Results on SHRP2: data integration

Common variables in SHRP2 and NHTS 2017 data sets

Individual level Vehicle level Trip level

gender, age, race, ethnicity, vehicle make, vehicle type duration, distance,
urban size, birth country, vehicle age, mileage average speed, start
education, HH income time, weekday,
home ownership, job status month

Differences between SHRP2 and NHTS in sample composition

Feature NHTS SHRP2

Age range ≥ 5 16-80
Transportation mode walk, bicycle, motorbike, car, ... car, SUV, van, light truck
Driving status driver, passenger driver
Vehicle ownership owned, rental, public transportation owned
Trip measurement self-reported sensor-recorded
Followup duration one day months or years
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Results on SHRP2: pseudo-weighting

Assessing the common support of the distribution of estimated PS in SHRP2 vs NHTS
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Results on SHRP2: model specification

Comparing the performance of BART with GLM in estimating PS and trip-related outcomes
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Results on SHRP2: sample composition

Comparing dist. of common covariates: unweighted SHRP2 vs weighted NHTS 2017
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Results on SHRP2: sample composition

Comparing dist. of common covariates: unweighted SHRP2 vs weighted NHTS 2017
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Results on SHRP2: sample composition

Comparing dist. of common covariates: unweighted SHRP2 vs weighted NHTS 2017
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Results on SHRP2: bias adjustment

Comparing adjusted estimates of some trip-related outcome vars in SHRP2 vs NHTS
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Result on SHRP2: bias adjustment

Comparing adjusted estimates of some SHRP2-specific outcome vars in SHRP2
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Results on SHRP2: bias adjustment

Comparing adjusted estimates of some SHRP2-specific outcome vars in SHRP2
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Result on SHRP2: bias adjustment

Comparing adjusted estimates of maximum speed stratified by different factors
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Discussion

We proposed a robust method for inference in non-prob. samples.

The AIPW method under BART produced approximately unbiased estimates,
especially when both QR and PM are unknown.

Compared to PMLE, our proposed estimator was more efficient.

Under GLM both point and variance estimators were DR.

The proposed asymptotic/bootstrap variance estimator performed well in simulations.

However, the results of SHRP2 data were poor for some outcome vars.
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Discussion

Weaknesses:

1 Auxiliary variables in SHRP2 were poor predictors of trip-related outcomes.

2 Variance estimate under BART was not as accurate as alternative methods

3 Computationally demanding, especially in high-dimensional data or when n is too large.

Future directions:

1 To develop a model-assisted method using penalized spline of propensity prediction

2 To expand a sandwich-type variance estimator under GLM when πR
i is unknown for i ∈ B

3 To apply divide-and-recombine techniques to reduce the computational burden

4 To adjust for the differential measurement errors in covariates
Rafei, Ali (MPSM) Robust Inference for Non-Probability Samples JSM 2020 34 / 35



Penalized spline propensity prediction

Estimate πR
i for i ∈ SB given xi by modeling E (πR

i |xi ) if it is unknown for units of B.

Estimate πB
i based on B ∪ R using one of the methods discussed, PAPW/PAPP/IPSW.

Predict yi for i ∈ SR given [π̂R
i , π̂B

i , xi ] using a penalized spline model as below:

Penalized spline model for a continuous outcome

yi |xi , π̂R
i , π̂B

i ; θ ∼ N(θ0 + xTi θ1 + uTi1(π̂
R
i −KR)

p
+ + uTi2(π̂

B
i −KB)

p
+, τ2)

where uij ∼ N(0, σ2
j I ), a vector of q random effects and K a vector of q fixed knots.

Use design-based methods in R to estimate the population unknown quantity:

ˆ̄yPM =
1

N

nR

∑
i=1

ŷi

πR
i

Rafei, Ali (MPSM) Robust Inference for Non-Probability Samples JSM 2020 35 / 35



Penalized spline propensity prediction

Estimate πR
i for i ∈ SB given xi by modeling E (πR

i |xi ) if it is unknown for units of B.

Estimate πB
i based on B ∪ R using one of the methods discussed, PAPW/PAPP/IPSW.

Predict yi for i ∈ SR given [π̂R
i , π̂B

i , xi ] using a penalized spline model as below:

Penalized spline model for a continuous outcome

yi |xi , π̂R
i , π̂B

i ; θ ∼ N(θ0 + xTi θ1 + uTi1(π̂
R
i −KR)

p
+ + uTi2(π̂

B
i −KB)

p
+, τ2)

where uij ∼ N(0, σ2
j I ), a vector of q random effects and K a vector of q fixed knots.

Use design-based methods in R to estimate the population unknown quantity:

ˆ̄yPM =
1

N

nR

∑
i=1

ŷi
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Thanks for your attention

Email address: arafei@umich.edu
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