## Precision of Estimates of Nonresponse Bias in Means

**TRANSPORT** 

Stephanie Eckman Jennifer Unangst, Jill Dever, Chris Antoun



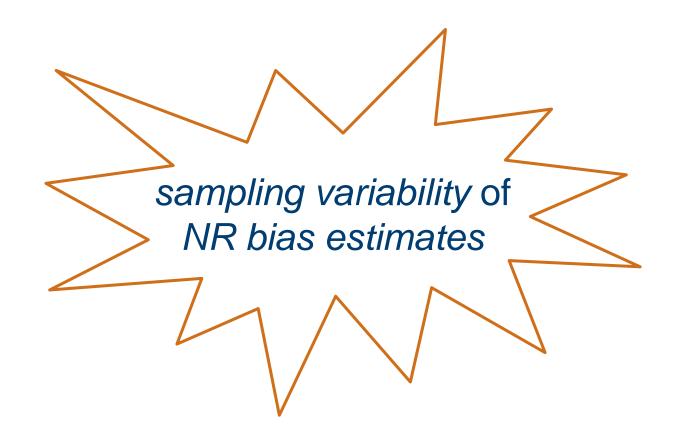
RTI International is a registered trademark and a trade name of Research Triangle Institute.

www.rti.org

## Motivation

- Published estimates of NR bias
  - Judge quality of that survey
  - Predict nonresponse patterns in future surveys

Example: repeated cross-sectional survey


Round X shows low response from HHs in Northwest region

 $bias(p_r^{nw}) = p_r^{nw} - p_{full}^{nw}$ 

Should we change protocol in Round Y?

## Motivation

- Maybe response is low because of sample
  - If we repeated survey, how would bias differ?



- 1. How variable are NR bias estimates?
  - -RR
  - Clustering
- 2. How to estimate  $Var(bias(\overline{y_r}))$ ?



## Simulation Set Up: Unclustered

# variable of interest $\begin{pmatrix} Y \\ Z \end{pmatrix} \sim N \begin{bmatrix} 10 \\ \delta \end{bmatrix}, \begin{pmatrix} \theta & \rho \\ \rho & 1 \end{bmatrix}$

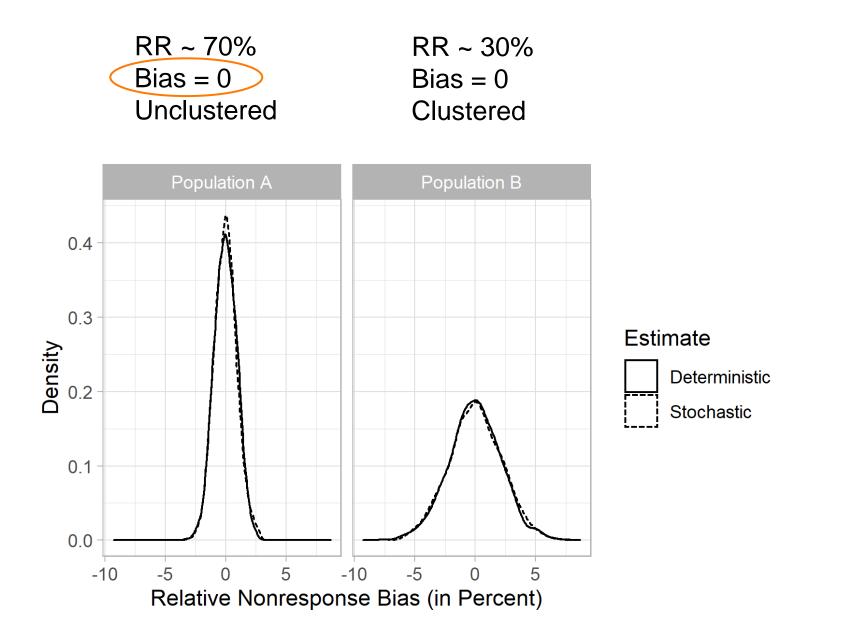
| Pa | arameters |      |                   |
|----|-----------|------|-------------------|
| δ  | RR        | 30%  | 70%               |
| ρ  | NR bias   | None | Up to 10% NR bias |

variable of interest  $\begin{pmatrix} Y \\ Z \end{pmatrix} \sim N \begin{bmatrix} 10 + \phi \\ \delta \end{bmatrix}, \begin{pmatrix} \theta & \rho \\ \rho & 1 \end{bmatrix}$ 

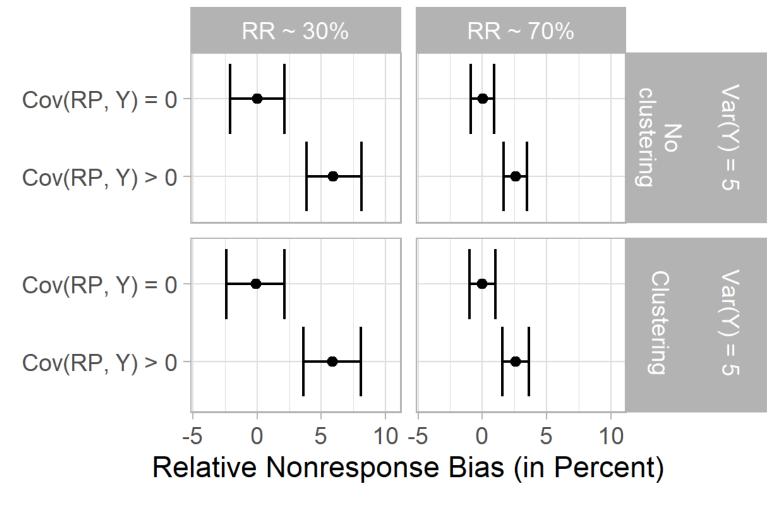
#### **Parameters**

| φ | Clustering | Unclustered | Clustered         |
|---|------------|-------------|-------------------|
| ρ | NR bias    | None        | Up to 10% NR bias |
| δ | RR         | 30%         | 70%               |

- Used similar process to create binomial & Poisson Ys
  - Correlated with Z
  - Normal  $\rightarrow$  uniform  $\rightarrow$  binomial
- 2,000 samples of n=1,000
  - -SRS
  - Multi-stage cluster

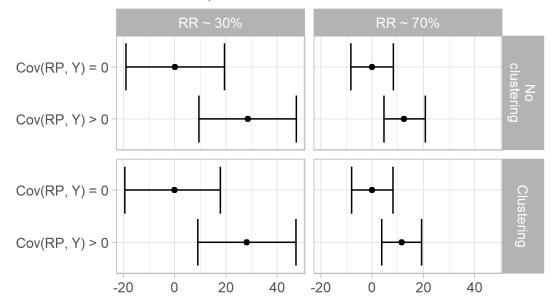

- Response propensity 
$$RP_k = \frac{e^{1+Z_k}}{1+e^{1+Z_k}}$$
  
deterministic:  $R_{det,k} = 0,1$   
stochastic:  $R_{sto,s,k} = 0,1$ 

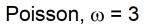
 $Y \sim Bin(1, 0.5)$  $Y \sim Poisson(3)$ 

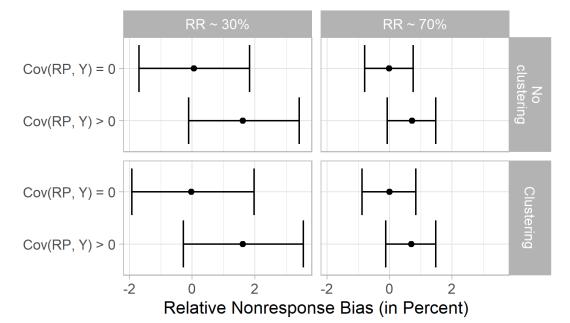

- 1. How variable are NR bias estimates?
  - -RR
  - Clustering
- 2. How to estimate  $Var(bias(\overline{y_r}))$ ?



## Example Results: Estimated Bias in Simulated Samples





## All Populations: Estimated Bias in Simulated Samples




Graphs show 2.5% - 97.5% range

Bernoulli, p = 0.5



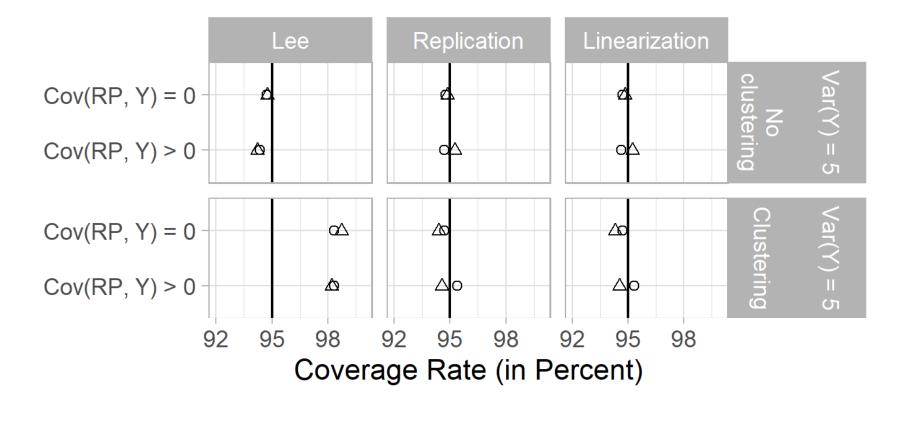




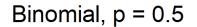
- 1. How variable are NR bias estimates?
  - -RR
  - Clustering
- 2. How to estimate  $Var(bias(\overline{y_r}))$ ?

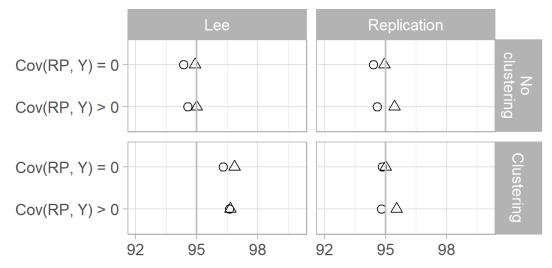


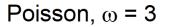
• Lee (2006) method

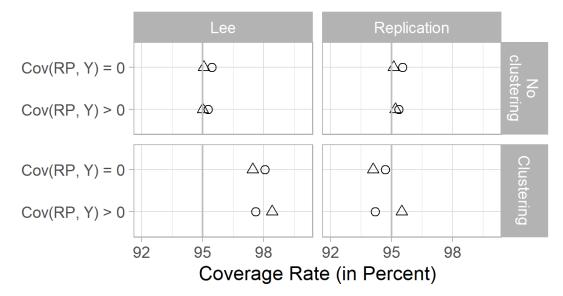

$$bias(\bar{y}_r) = (1 - rr) \times (\bar{y}_r - \bar{y}_{nr})$$

 $Var[bias(\bar{y}_r)] = (1 - rr)^2 \times [Var(\bar{y}_r) + Var(\bar{y}_{nr})]$ 


Replication & Linearization


| ID | Response? | Base<br>weight | Adjus<br>weigh |     | Y    | Set | Analysis<br>weight |
|----|-----------|----------------|----------------|-----|------|-----|--------------------|
| 1  | Yes       | 100            |                | 140 | 10.3 | 1   | 140                |
| 2  | Yes       | 150            |                | 190 | 9.8  | 1   | 190                |
| 3  | No        | 80             |                | 0   | 8.7  | 1   | 0                  |
| 1  | Yes       | 100            |                | 140 | 10.3 | 2   | 100                |
| 2  | Yes       | 150            |                | 190 | 9.8  | 2   | 150                |
| 3  | No        | 80             |                | 0   | 8.7  | 2   | 80                 |


## Simulation Study – Performance of Three Variance Estimation Methods




 $\circ$  RR ~ 30%  $\triangle$  RR ~ 70%









 $\circ$  RR ~ 30%  $\triangle$  RR ~ 70%

| Variable                   | Туре       | n    | bias   | Lee   | Repl  | Ratio |
|----------------------------|------------|------|--------|-------|-------|-------|
| Hours of TV per weekday    | Continuous | 623  | 0.078  | 0.029 | 0.030 | 0.972 |
| Ever driven drunk          | Indicator  | 623  | 0.013  | 0.007 | 0.007 | 0.986 |
| Immigrants improve NL      | Indicator  | 622  | 0.011  | 0.007 | 0.007 | 0.987 |
| Approval of Obama          | Continuous | 622  | 0.356  | 0.388 | 0.389 | 0.998 |
| Times exercise per week    | Count      | 623  | 0.003  | 0.008 | 0.008 | 1.004 |
| Times restaurant last year | Count      | 623  | -0.05  | 0.198 | 0.197 | 1.004 |
| Occupational prestige      | Continuous | 1889 | -0.012 | 0.187 | 0.204 | 0.918 |
| Voted in 2004              | Indicator  | 1754 | 0.023  | 0.006 | 0.003 | 1.725 |
| Hours of TV per day        | Continuous | 1426 | 0      | 0.064 | 0.031 | 2.029 |
| Finances better            | Indicator  | 2033 | -0.004 | 0.008 | 0.003 | 2.611 |
| Believe in afterlife       | Indicator  | 1803 | 0.017  | 0.009 | 0.003 | 2.895 |
| Own gun                    | Indicator  | 1233 | 0      | 0.005 | 0.001 | 6.495 |

Ratio is Lee standard error / replication standard error

- Estimates of NR bias in means vary across samples
- Lee method works well with unclustered samples
- Replication & linearization work with all samples

Careful when generalizing from 1 sample to another



### Stephanie Eckman

Fellow, RTI International

Code, paper, slides: <u>https://osf.io/rbzyd/</u> seckman@rti.org
http://stepheckman.com
@stephnie

|                                          | Stata (linearization)                     | R (JK replication)                                                                  |
|------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------|
| Describe unclustered data                | svyset ID [pweight = v]                   | dsg <- assvrepdesign(<br>svydesign(ids = ~ID,<br>data = dset,<br>weights = ~v)      |
| Describe clustered data                  | svyset cluster [pweight = v]              | dsg <- assvrepdesign(<br>svydesign(ids = ~cluster,<br>data = dset,<br>weights = ~v) |
| Estimate bias                            | svy: mean y, over(set)                    | bias <- svyby(~y, ~set, dsg,<br>svymean,<br>covmat = TRUE)                          |
| Estimate standard error of bias estimate | lincom _b[c.y@1bn.set] –<br>_b[c.y@2.set] | SE(svycontrast(bias,<br>quote('1' – '2')))                                          |