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Problem

I Incomplete survey data
I Item nonresponse
I Unit nonresponse
I Failure to link records
I Panel attrition

I Missing values are most likely not Missing Completely At
Random (MCAR)

I High number of variables with any possible distribution in
survey data

⇒ Usual approach: multiple sequential imputation

I Iteratively imputing each variable with missing values
conditional on all other variables

I Based on Missing At Random (MAR)
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Why is it a problem?

Standard procedures (e.g. MICE) need specified model for each
incomplete variable

I Subjectivity:
I Method selection
I Model specification

I Efficiency: limited resources (time, labor)

Additional, standard procedures can fail in high-dimensional data
sets (see e.g. Loh et al. (2018), Razzak and Heumann (2019))
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Research Question

How can missing data imputation in high-dimensional (survey) data
be automated?

For example:

I Health and Retirement Study: over 6,000 variables

I Panel Study of Income Dynamics: over 5,000 variables
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Outline

I Proposed solution

I Small scale simulation

I Large scale simulation
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Proposed Solution

I Sequential imputation:
I Iteratively imputing each variable with missing values

conditional on all other variables

New:
I Within sequential imputation procedure:

I Automated model specification
I Automated method selection

I Advantages:
I Many different methods possible
I Objective procedure
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Used Methods

1. Bayesian (G)LM (Deng et al. 2016)

2. Classification and regression tree (CART) (Burgette and Reiter
2010)

3. Random Forest (Shah et al. 2014)

4. Bayesian Additive Regression Trees (BART) (Xu, Daniels, and
Winterstein 2016)
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Automated Model Specification

1. Parametric models: Bayesian (G)LM
I Perform Elastic Net to determine model formula
I Fit Bayesian model with determined formula

2. Tree-based methods: (CART, Random Forest , BART)
I No predefined model formula necessary
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Proposed Solution

I Sequential imputation:
I Iteratively imputing each variable with missing values

conditional on all other variables

New:
I Within sequential imputation procedure:

I Automated model specificationX
I Automated method selection

I Advantages:
I Many different models possible
I Objective procedure
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Automated Method Selection - Criterion 1
Adapted from Bondarenko and Raghunathan (2016):

1. Estimate response propensity score ê for incomplete variable Y :

ê = P(R = 1|X), R =
{
1 if Y observed,
0 if Y missing

2. Estimate conditional densities for observed values conditional
on propensity score:

f̂ (Y |ê,R = 1)

3. For all m potential methods, fit model and predict sets of
missing values:

Ŷm|X,R = 0

4. Estimate conditional densities for imputed values conditional on
propensity score:

f̂ (Ŷm|ê,R = 0) 10 / 44



Automated Method Selection - Criterion 1 (cont.)
Comparing f̂ (Y |ê,R = 1) (observed) and f̂ (Ŷm|ê,R = 0)
(imputed):
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Observed
e.g. Regularized LM
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⇒ Automation: comparing via measure of similarity (here:
Hellinger’s distance Hm)
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Automated Method Selection - Criterion 2

Pseudo MSE on observed values Y |R = 1:

For a scalar Yi |Ri = 1, we compute a combined measure of
prediction accuracy and variability:

Si ,m =

Bias2︷ ︸︸ ︷
(Ȳi ,m − Yi)2 +

Variance︷ ︸︸ ︷
1

B − 1

B∑
b=1

(Y (b)
i ,m − Ȳi ,m)2

⇒ Averaging over all Si ,m leads to the MSE-like measure MSE ∗
m

I Measure of how well conditional mean is modeled

I Si ,m available on a scalar level
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Proposed Solution

I Sequential imputation:
I Iteratively imputing each variable with missing values

conditional on all other variables

New:
I Within sequential imputation procedure:

I Automated model specificationX
I Automated method selectionX

I Advantages:
I Many different models possible
I Objective procedure
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Sequential Imputation with Integrated Method Selection
(SIIMS) - Procedure

For each iteration:

1. For each method m:
I Fit a model using all covariates
I Estimate criteria assessing:

I Distribution of imputed values (Criterion 1)
I Conditional mean (Criterion 2)

2. Combine these criteria to a single method assessment criterion
3. Select method with minimal criterion and update imputed

values
4. Repeat 1 - 3 for all variables with missing values

⇒ Repeat procedure to create multiply imputed data sets
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How to combine criteria?

Weighted sum of standardized Hm(H̃m), and MSE ∗
m(M̃SE ∗

m):
⇒ single method assessment criterion for method m (MACm):

MACm = w1 ∗ H̃m + w2 ∗ M̃SE ∗
m

Weighting:

I Hm: Plausibility of imputed values under MAR

I MSE ∗
m: Essential model structure, necessary for unbiased

estimates under MAR

⇒ Three different sets of weights:

1. w1 = 1, and w2 = 0
2. w1 = 0, w2 = 1
3. w1 = w2 = 0.5
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Additional Features

I Binary variables

I Optional upstream variable selection

I Optional double robust property (Zhang and Little 2009)
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Outline

I Proposed solutionX
I Small scale simulation

I Large scale simulation
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Small Scale Simulation - Setup

Compared imputation approaches:

I SIIMS

I MICE using Random Forest

Assessment:

I Accuracy of multiple imputed data

I Runtime of the imputation process

⇒ Trade-off between accuracy and process time

18 / 44



Small Scale Simulation - Data Generation

1. Draw values of Z : Z ∼ N(0, 1)

2. Draw values of X |Z : X ∼ N(α0 + α1Z , σ2X )

3. Draw values of Y |Z ,X : Y ∼ N(β0 + β1X + β2Z , σ2Y )

4. Generating response indicators RZ and RX :
a)

pX = logit−1(δX0 + δX1 Y ), pZ = logit−1(δZ0 + δZ1 X )

b)

RZ =
{
1 for pZ ≥ uZ ,
0 for pZ < uZ

RX =
{
1 for pX ≥ uX ,
0 for pX < uX

with uZ , uX ∼ Unif (0, 1).
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Small Scale Simulation - Parameters
α0 = 0, α1 = 0.25, σ2X = 1

β0 = 1, β1 = 1, β2 = 0.5, σ2Y = 1

For response indicators RZ and RX :

δX0 = δZ0 = 0.7

δX1 = −2, δZ1 = 0.7

⇒ Missing at random (MAR) situation

Varying Parameter:

Number of observations: 1.000, 5.000

Other parameters:

Number of iterations: 5

Number of multiply imputed data sets: 5
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Small Scale Simulation - Missing Data Pattern

Coefficients of Y ∼ X + Z :

β0 βX βZ

Original Data 1 1 0.5
Complete Cases 0.18 0.69 0.34
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Results - Bias
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Results - RMSE
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Results - Runtime
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Results - Runtime (cont.)
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Results - Selected Methods
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Results - Discussion

Bias: reduced but not zero

I More iterations

I Initially imputed values

I Compare implementations in SIIMS and MICE

Runtime: still relatively high

I BART and GLM are bottle necks
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Outline

I Proposed solutionX
I Small scale simulationX
I Large scale simulation
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Large Scale Simulation - Based on Real Data Set

Why real data?

I Imputation procedures sensitive to data generating process

What data set?

National Health and Nutrition Examination Survey (NHANES) data

I 5 waves collected 1999 - 2016
I Variables: questionnaire data, dietary data (diary), physical

examination data (mobile examination center)
I Missing values: blockwise + item nonresponse
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Large Scale Simulation - Assessment Process (adapted
from Ezzati-Rice et al. 1995)
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Large Scale Simulation - Assessment Process - Step 2
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Large Scale Simulation - Assessment Process - Step 3

32 / 44



Large Scale Simulation - Variables of Interest (VOI)

Selection criteria

1. Relationship: approximately linear, i.e. a linear model can be fit
2. Missing values: mostly incomplete, to introduce missing data

patterns (following Ezzati-Rice et al. 1995).
3. Data collection: different modes of data collection (different

missing data patterns)
4. Population: not target a sub-population (e.g. smokers), to

avoid “not applicable” cases.
5. Wave: measured in NHANES wave 2015/16
6. Missing values should rather be in predictors than in outcomes

for improved β̂-coefficients after MI (Little 1992).

Problem: most papers use variables with missing values as outcomes
and control for (almost) completely observed variables (like
social-demographics).
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Large Scale Simulation - Identified VOIs
Outcome:

BMI (continuous, log-transformed) - mode: physical examination

Covariates:

I Kilo-calories intake (KCAL) (continuous) - mode: nutrition
diary

I Language of the physical examination interview (LANG)
(binary, English vs not English) - mode: physical examination

I Leak urine during physical activities (LEAK) (binary, yes, no) -
mode: physical examination

I Upper arm length (ARML, continuous) - mode: physical
examination

I Loud noise exposure (LOUD) (binary, yes, no) - mode:
questionnaire
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Large Scale Simulation - Missing Data Patterns
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Large Scale Simulation - Expectations

Results:

I Binary vs. continuous variables

I Upstream variable selection on quantitative properties and
runtime

I Double robust property on quantitative properties
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Outline

I Proposed solutionX
I Small scale simulationX
I Large scale simulationX
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Next Steps

1. Increase Speed

2. Simulation on high-dimensional data

3. Compare procedures in SIIMS and MICE
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Thank you for your attention!

Any questions?

michaf@umich.edu
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Appendix
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Used Methods - details

Bayesian (G)LM (glmnet, rstan):

I Parameters tuned: elastic net mixing parameter (5-fold
cross-validation)

I Parameters specified: default of R package “glmnet”

I Imputed data: draws from posterior predictive distribution

CART (rpart):

I Parameters tuned: none

I Parameters specified: min. number of observations in terminal
node = 5 (MICE default)

I Imputed data: draws within terminal nodes
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Used Methods - details (cont.)

Random Forest (randomForest):

I Parameters tuned: none

I Parameters specified: number of trees = 20, min. number of
observations in terminal node = 5 (MICE default)

I Imputed data: draws from normal distribution, mean and
standard deviation estimated from predictions of single trees

BART (bartMachine):

I Parameters tuned: none

I Parameters specified: number of trees = 50 (following
Kapelner and Bleich (2013))

I Imputed data: draws from posterior predictive distribution
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Results - Variance
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