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Background and Motivation

* Increased interest in alternative data collection designs
* Responsive, Adaptive, Tailored, Targeted Designs

* Apply different data collection features to sample cases
* Made in pursuit of some data collection goal

e Survey data collection parameters (SDCPs)
* Response propensity
* Costs
* Survey item response

* Need high quality predictions of SDCPs to make optimal decisions



Statement of Problem

e Responsive and Adaptive Survey Designs
* Interventions made during data collection
* Rely on historical data for a survey?
* Rely on accumulating data?

* Using only data from current round can lead to biased predictions
* Wagner and Hubbard (2014)!]

Need a method that combines
external data and current accumulating data
in order to improve predictions of SDCPs



Bayesian Framework for Prediction

e Bayesian methods are a natural solution

* Systematic way to combine external data with current accumulating data
e Obtain posterior distributions of coefficients in predictive models of interest:

pos(64, ...,0,) xp(04,...,0,) [1;p(y;il 64, ..., 61,)

» Select k samples from posterior distribution of each coefficient
* Generate k case-level predictions of an SDCP and average over k predictions

* Recent research on Bayesian methods to improve prediction of SDCPs

« Schouten et al. (2018)!2 - contact and cooperation propensities
* West et al. (under review)B! - response propensity

* Wagner et al. (2020)4 - data collection costs

 Coffey et al. (2020)15] - response propensity via expert elicitation



Making Interventions Based on SDCPs

* Different data collection features have different properties
e |deally, survey managers would know characteristics like...

* jfa sample member will respond - response propensity
* resources needed to obtain that response - cost
* information a sample member will provide - survey item response

e Schouten et al. (2018) discusses pre-data collection allocation

* Reallocation during data collection
e Can leverage historical and current accumulating data — better predictions

* Conduct experiment in the National Survey of College Graduates



National Survey of College Graduates

* Sponsored by the National Center for Science and Engineering
Statistics within the National Science Foundation

e Conducted by the Census Bureau every 2 years
» Targets college-educated individuals in the US
* Sampled out of the American Community Survey

* Data Collection
* Six-months
* Sequential Modes (web, paper, CATI)



National Survey of College Graduates

Phase Primary Modes Weeks Days

1. Web Push Phase Web 0-7 -6 — 49
2. Mail Questionnaire Phase  Web, Mail 8-11 50-77
3. Telephone Follow-up Phase Web, Mail, CATI 12-17 78-119
4. Late Follow-Up Phase Web, Mail, CATI 18-26 120-182

* Mix of modes is used to reduce nonresponse error
* Costs of later mode strategies are higher than web self-response

e Costs may not be worth it if sample case
* Unlikely to respond in more expensive modes
* Does not contribute information to the survey estimates

 What are the alternate (less costly)?
* How do we identify cases for those strategies?



Intervention Pathways
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Model Descriptions

e Response propensity (Bayesian Estimates of Bv):

exp(Ey=o Po¥iav)
1+ exp(Zy—o AvXiav)

Dia = DVig = 1Xiq) =

* Value of self-reported salary (Bayesian Estimates of ,@v):

|4
(Yi)l/g — Z ,évxidv + €ig
v=0

* Cost of response (Estimated from Prior Data Ignoring Error):

E(C) = pia(CF) + (1 — pi)(C

ith case

dt"day

v covariates

€ error

CRcost of response
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Responsive Design Experiment

* Reduce data collection costs without hurting data quality

* “minimize cost for a small increase in RMSE”
* Allocate “less impactful” cases to lower cost data collection strategies
 RMSE of salary — key survey estimate in the NSCG

* Design:
e Systematic random sample (n=8,000) with cluster size of 2
* Control group managed with production operational methodology
* Treatment group managed using responsive design decisions

* Evaluation:
 Compare actual costs, mean(salary), RMSE(salary), response rates



Optimization Steps

e At each intervention point
e Use priors from historical data + currently accumulating data

* Predict (for nonrespondents)
* Value of response variable, salary
* Response propensity under different strategies
* Cost of different strategies

* Allocate sets of cases to new (cheaper) strategy
e Examine effect on RMSE(salary) and costs
e Determine which cases to allocate to new strategy
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Optimization Output

* Predicted responses:
e Assuming full response — target mean: y

« Different strategies: Baseline strategy: y499 ; Alternate strategy: )QIASO
* RMSE for each strategy:

« RMSE(S4) = (54 = 5T)° + Var(54)
 Total costs for baseline and alternate strategy

4 A00
CAOO = ZlER Cl + ZLES(C + Cl )

A AOO
.+ (40 = 2ieR Cl + ZLESAOO(C +C ) +ZLESA5O(C tc

RMSE(SASO) CvASO
RMSE(SAOO) ’ CA00

A ASO
)

e Ratios of alternate vs baseline: (



Decision Point #1:
Replace Questionnaire with Web Invite

Ratios of Cost and RMSE Versus Baseline Strategy
Label is Percent of Open Cases Moved to Alternate Strategy
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Decision Point #1: Week 6
Replace Questionnaire with Web Invite

Ratios of Cost and RMSE Versus Baseline Strategy Minimization Function Value
Label is Percent of Open Cases Moved to Alternate Strategy By Percent of Open Cases Moved to Alternate Strategy
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Results:
Data Collection Costs

Treatment Control Sig.
Sample Size 8,000 8,000
Data Collection Costs
Mean Cost-per-Case | $26.81 $29.57 | *
Median Cost-per-Case $20.22 $26.81

*sig (@ = 0.05)

25



Results:
mean(Salary) & RMSE(Salary)

Treatment Group Treatment | Control
% Respondents Included 100.00% | 99.94%
Mean Salary (S) 184,082.10 | 84,250.02
RMSE Salary 162,776.47 | 61,940.82
Bias in Mean Salary (5) -167.92 (-)

% Difference RMSE 1.35% (-)

*sig (¢ = 0.05)




Results:
Response Rate

Sample Size

Unweighted Response Rate

Percent of Response from Web
Percent of Response from Mail
Percent of Response from CATI

8,000 8,000
Response Rate
| 57.08% 58.23%
85.92% 83.50%
8.59% 10.32%
5.50% 6.18%

*sig (a = 0.05)



Conclusions

* |[n our pre-experiment research, Bayesian methods led to reduced
prediction error (RP, salary)

* Possible to implement:
* Bayesian prediction models in a production setting
» Decision framework that balances data collection costs and quality

* Positive experimental results:
» Saved approximately 9% of data collection costs (p < 0.05)
* Mean value of self-reported salary decreased 0.20% (ns)
 RMSE of mean(salary) increased 1.3% (ns)
* Unweighted response rate decreased 1.15% (ns)
* In-line with the predicted expectations

* These methods show promise for improving data collection outcomes



Limitations and Future Work

* Consider multiple survey items
* Experiment only focused on one survey item, salary

* Improve predictive models and utilize a fully Bayesian approach
* Experiment was not fully Bayesian because of cost models

* Incorporate survey weights
* Weighted mean maybe significantly different from unweighted mean
* Weight variability can increase variance of key survey estimates
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