Optimizing Data Collection Interventions to Balance Cost and Quality Under a Bayesian Framework

Stephanie Coffey

Center for Optimization and Data Science Presentation at the Michigan Program in Survey Methodology Seminar March 31, 2021

Background and Motivation

- Increased interest in alternative data collection designs
 - Responsive, Adaptive, Tailored, Targeted Designs
- Apply different data collection features to sample cases
 - Made in pursuit of some data collection goal
 - Survey data collection parameters (SDCPs)
 - Response propensity
 - Costs
 - Survey item response
- Need high quality predictions of SDCPs to make optimal decisions

Statement of Problem

- Responsive and Adaptive Survey Designs
 - Interventions made during data collection
 - Rely on historical data for a survey?
 - Rely on accumulating data?
- Using only data from current round can lead to biased predictions
 - Wagner and Hubbard (2014)^[1]

Need a method that combines external data and current accumulating data in order to improve predictions of SDCPs

Bayesian Framework for Prediction

- Bayesian methods are a natural solution
 - Systematic way to combine external data with current accumulating data
 - Obtain posterior distributions of coefficients in predictive models of interest:

$$pos(\theta_1, ..., \theta_n) \propto p(\theta_1, ..., \theta_n) \prod_i p(y_i | \theta_1, ..., \theta_n)$$

- Select k samples from posterior distribution of each coefficient
- Generate k case-level predictions of an SDCP and average over k predictions
- Recent research on Bayesian methods to improve prediction of SDCPs
 - Schouten et al. (2018)^[2]

- contact and cooperation propensities
- West et al. (under review)[3]
- response propensity

• Wagner et al. (2020)^[4]

- data collection costs

• Coffey et al. (2020)^[5]

- response propensity via expert elicitation

Making Interventions Based on SDCPs

- Different data collection features have different properties
- Ideally, survey managers would know characteristics like...
 - *if* a sample member will respond response propensity
 - resources needed to obtain that response cost
 - *information* a sample member will provide survey item response
- Schouten et al. (2018) discusses pre-data collection allocation
- Reallocation during data collection
 - Can leverage historical and current accumulating data better predictions
- Conduct experiment in the National Survey of College Graduates

National Survey of College Graduates

- Sponsored by the National Center for Science and Engineering Statistics within the National Science Foundation
- Conducted by the Census Bureau every 2 years
- Targets college-educated individuals in the US
- Sampled out of the American Community Survey
- Data Collection
 - Six-months
 - Sequential Modes (web, paper, CATI)

National Survey of College Graduates

Phase	Primary Modes	Weeks	Days
1. Web Push Phase	Web	0 - 7	-6 – 49
2. Mail Questionnaire Phase	Web, Mail	8 - 11	50 – 77
3. Telephone Follow-up Phase	Web, Mail, CATI	12 - 17	78 – 119
4. Late Follow-Up Phase	Web, Mail, CATI	18 - 26	120 – 182

- Mix of modes is used to reduce nonresponse error
- Costs of later mode strategies are higher than web self-response
- Costs may not be worth it if sample case
 - Unlikely to respond in more expensive modes
 - Does not contribute information to the survey estimates
- What are the alternate (less costly)?
- How do we identify cases for those strategies?

Phase

- 1. Web Push Phase
- 2. Mail Questionnaire Phase
- 3. Telephone Follow-up Phase
- 4. Late Follow-Up Phase

Model Descriptions

• Response propensity (Bayesian Estimates of $\hat{\beta}_{v}$):

$$\hat{p}_{id} = \hat{p}(y_{id} = 1|X_{id}) = \frac{\exp(\sum_{v=0}^{V} \hat{\beta}_{v} x_{idv})}{1 + \exp(\sum_{v=0}^{V} \hat{\beta}_{v} x_{idv})}$$

• Value of self-reported salary (Bayesian Estimates of $\hat{\beta}_v$):

$$(y_i)^{1/3} = \sum_{v=0}^{V} \hat{\beta}_v x_{idv} + \epsilon_{id}$$

• Cost of response (Estimated from Prior Data Ignoring Error):

$$E(C_i) = \hat{p}_{id}(\hat{C}_{id}^R) + (1 - \hat{p}_{id})(\hat{C}_{id}^N)$$

 i^{th} case d^{th} day v covariates ϵ error \hat{C}^R cost of response \hat{C}^{NR} cost of nonresponse

Responsive Design Experiment

- Reduce data collection costs without hurting data quality
- "minimize cost for a small increase in RMSE"
 - Allocate "less impactful" cases to lower cost data collection strategies
 - RMSE of salary key survey estimate in the NSCG

• Design:

- Systematic random sample (n=8,000) with cluster size of 2
- Control group managed with production operational methodology
- Treatment group managed using responsive design decisions

• Evaluation:

Compare actual costs, mean(salary), RMSE(salary), response rates

Optimization Steps

- At each intervention point
- Use priors from historical data + currently accumulating data
- Predict (for nonrespondents)
 - Value of response variable, salary
 - Response propensity under different strategies
 - Cost of different strategies
- Allocate sets of cases to new (cheaper) strategy
- Examine effect on RMSE(salary) and costs
- Determine which cases to allocate to new strategy

Case	Resp Stat	Resp Val	Accrued Costs
390	1	y_i	c_i^p
194	1	y_i	c_i^p
280	1	y_i	c_i^p
227	1	y_i	c_i^p
798	0		c_i^p
578	0		c_i^p
638	0		c_i^p
742	0		c_i^p

Case	Resp Stat	Resp Val	Accrued Costs	Impute RVal
390	1	y_i	c_i^p	y_i
194	1	y_i	c_i^p	y_i
280	1	y_i	c_i^p	y_i
227	1	y_i	c_i^p	y_i
798	0		c_i^p	\hat{y}_i
578	0		c_i^p	\hat{y}_i
638	0		c_i^p	\hat{y}_i
742	0		c_i^p	$\hat{\mathcal{Y}}_i$

Case	Resp Stat	Resp Val	Accrued Costs	Impute RVal
390	1	y_i	c_i^p	y_i
194	1	y_i	c_i^p	y_i
280	1	y_i	c_i^p	y_i
227	1	y_i	c_i^p	y_i
798	0		c_i^p	$\widehat{\mathcal{Y}}_i$
578	0		c_i^p	\hat{y}_i
638	0		c_i^p	\hat{y}_i
742	0		c_i^p	\hat{y}_i
				$\hat{\overline{\gamma}}T$

Case	Resp Stat	Resp Val	Accrued Costs	Impute RVal	Dist $(\hat{y}_i - \hat{\overline{y}})$	Dist Rank
390	1	y_i	c_i^p	y_i		
194	1	y_i	c_i^p	y_i		
280	1	y_i	c_i^p	y_i		
227	1	y_i	c_i^p	y_i		
798	0		c_i^p	\hat{y}_i	\hat{d}_i	1
578	0		c_i^p	$\widehat{\mathcal{Y}}_i$	\hat{d}_i	2
638	0		c_i^p	$\hat{\mathcal{Y}}_i$	\hat{d}_i	3
742	0		c_i^p	\hat{y}_i	\hat{d}_i	4
				$\widehat{\nabla}T$		

Case	Resp Stat	Resp Val	Accrued Costs	Impute RVal	Dist $(\hat{y}_i - \hat{\overline{y}})$	Dist Rank	Next Strat
390	1	y_i	c_i^p	y_i			
194	1	y_i	c_i^p	y_i			
280	1	y_i	c_i^p	y_i			
227	1	y_i	c_i^p	y_i			
798	0		c_i^p	\hat{y}_i	\hat{d}_i	1	0
750	O		c _i	Уі	u_i	-	1
F.70	0		p	^	3	2	0
578	0		c_i^p	$\hat{\mathcal{Y}}_i$	\hat{d}_i	2	1
638	0		c_i^p	ŵ	\hat{d}_i	3	0
036	U		c_{i}	$\hat{\mathcal{Y}}_i$	a_i	3	1
742	0		_c p	ŵ	â	4	0
742	U		c_{i}	y_i	a_i	4	1
742	0		c_i^p	\hat{y}_i	\hat{d}_i	4	

Case	Resp Stat	Resp Val	Accrued Costs	Impute RVal	Dist $(\hat{y}_i ext{-} \hat{\overline{y}})$	Dist Rank	Next Strat	Future Costs	Resp Prop
390	1	y_i	c_i^p	y_i					
194	1	y_i	c_i^p	y_i					
280	1	y_i	c_i^p	y_i					
227	1	y_i	c_i^p	y_i					
700	0		c_i^p		ĵ	1	0	\hat{c}_i^{S0}	${\widehat{ ho}_i}^{S0}$
798	U		c_i	$\hat{\mathcal{Y}}_i$	\hat{d}_i	1	1	\hat{c}_i^{S1}	$\hat{ ho_i}^{S1}$
F.70			p	^	3	2	0	\hat{c}_i^{S0}	$\hat{ ho_i}^{S0}$
578	0		c_i^p	\hat{y}_i	\hat{d}_i	2	1	\hat{c}_i^{S1}	$\hat{ ho_i}^{S1}$
620	0		p	^	7	2	0	$\hat{c}_i^{\ S0}$	$\hat{ ho_i}^{S0}$
638	0		c_i^p	\hat{y}_i	\hat{d}_i	3	1	\hat{c}_i^{S1}	${\widehat{ ho}_i}^{S1}$
740			p	^	3	4	0	\hat{c}_i^{S0}	$\hat{ ho_i}^{S0}$
742	0		c_i^p	\hat{y}_i	\hat{d}_i	4	1	$\hat{c_i}^{S1}$	${\hat{ ho}_i}^{S1}$
				\Box					

Case	Resp Stat	Resp Val	Accrued Costs	Impute RVal	Dist $(\hat{y}_i - \hat{\overline{y}})$	Dist Rank	Next Strat	Future Costs	Resp Prop	Resp Class
390	1	y_i	c_i^p	y_i						
194	1	y_i	c_i^p	y_i						
280	1	y_i	c_i^p	y_i						
227	1	y_i	c_i^p	y_i						
700	0		_p	^	î	4	0	$\hat{c}_i^{\ S0}$	$\hat{ ho_i}^{S0}$	1
798	0		c_i^p	\hat{y}_i	\hat{d}_i	1	1	\hat{c}_i^{S1}	$\hat{ ho_i}^{S1}$	1
E 70	0		$_{a}p$	û	â	2	0	$\hat{c}_i^{\ S0}$	$\hat{ ho_i}^{S0}$	0
578	U		c_i^p	\hat{y}_i	\hat{d}_i	Z	1	\hat{c}_i^{S1}	$\hat{ ho_i}^{S1}$	1
638	0		c_i^p	ŵ	\hat{d}_i	3	0	\hat{c}_i^{S0}	${\widehat{ ho}_i}^{S0}$	1
036	U		c_i	\hat{y}_i	a_i	3	1	\hat{c}_i^{S1}	$\hat{ ho_i}^{S1}$	0
742	0		c_i^p	û	â	4	0	$\hat{c}_i^{\ S0}$	${\widehat{ ho}_i}^{S0}$	0
742	U		c_{i}	\hat{y}_i	\hat{d}_i	4	1	\hat{c}_i^{S1}	$\hat{ ho_i}^{S1}$	0
				7						

Case	Resp	Resp	Accrued	Impute	Dist	Dist	Next	Future	Resp	Resp	Alloc	ation 0%
Case	Stat	Val	Costs	RVal	$(\hat{y}_i - \hat{\overline{y}})$	Rank	Strat	Costs	Prop	Class	RVal	Cost
390	1	y_i	c_i^p	y_i							y_i	c_i^p
194	1	y_i	c_i^p	y_i							y_i	c_i^p
280	1	y_i	c_i^p	y_i							y_i	c_i^p
227	1	y_i	c_i^p	y_i							y_i	c_i^p
700	0		p		ĵ	1	0	$\hat{c}_i^{\ S0}$	${\widehat{ ho}_i}^{S0}$	1	\widehat{y}_i	$c_i^p + \hat{c}_i^{S0}$
798	0		c_i^p	\hat{y}_i	\hat{d}_i	1	1	$\hat{c_i}^{S1}$	$\hat{ ho_i}^{S1}$	1		
F.70	0		_p	^	?	2	0	$\hat{c}_i^{\ S0}$	${\hat{ ho}_i}^{S0}$	0		$c_i^p + \hat{c}_i^{S0}$
578	0		c_i^p	\hat{y}_i	\hat{d}_i	2	1	$\hat{c_i}^{S1}$	${\hat{ ho}_i}^{S1}$	1		
620	0		$_{\mathbf{p}}^{p}$	<u> </u>	ĵ	3	0	\hat{c}_i^{S0}	$\hat{ ho_i}^{S0}$	1	\hat{y}_i	$c_i^p + \hat{c}_i^{S0}$
638	U		c_i^p	\hat{y}_i	\hat{d}_i	5	1	$\hat{c}_i^{~S1}$	$\hat{ ho_i}^{S1}$	0		
742	0		c_i^p	Ŷ	\hat{d}_i	4	0	$\hat{c}_i^{\ S0}$	${\widehat{ ho}_i}^{S0}$	0		$c_i^p + \hat{c}_i^{S0}$
742	U		c_i	\hat{y}_i	a_i	4	1	\hat{c}_i^{S1}	$\hat{ ho_i}^{S1}$	0		
				$\supseteq T$								

Case	Resp	Resp	Accrued	Impute	Dist	Dist	Next	Future	Resp	Resp	Alloc	ation 0%
Case	Stat	Val	Costs	RVal	$(\hat{y}_i - \hat{\overline{y}})$	Rank	Strat	Costs	Prop	Class	RVal	Cost
390	1	y_i	c_i^p	y_i							y_i	c_i^p
194	1	y_i	c_i^p	y_i							y_i	c_i^p
280	1	y_i	c_i^p	y_i							y_i	c_i^p
227	1	y_i	c_i^p	y_i							y_i	c_i^p
700	0		_a p		ĵ	1	0	$\hat{c}_i^{\ S0}$	${\widehat{ ho}_i}^{S0}$	1	\hat{y}_i	$c_i^p + \hat{c_i}^{S0}$
798	0		c_i^p	\hat{y}_i	\hat{d}_i	1	1	$\hat{c_i}^{S1}$	$\hat{ ho_i}^{S1}$	1		
570	0		p	_	3	2	0	$\hat{c_i}^{S0}$	$\hat{ ho_i}^{S0}$	0		$c_i^p + \hat{c}_i^{S0}$
578	0		c_i^p	\hat{y}_i	\hat{d}_i	2	1	\hat{c}_i^{S1}	${\widehat{ ho}_i}^{S1}$	1		
600			n	_	3		0	\hat{c}_i^{S0}	${\widehat{ ho}_i}^{S0}$	1	\hat{y}_i	$c_i^p + \hat{c}_i^{S0}$
638	0		c_i^p	\hat{y}_i	\hat{d}_i	3	1	$\hat{c}_i^{~S1}$	${\widehat{ ho}_i}^{S1}$	0		
			n		3		0	$\hat{c}_i^{\ S0}$	${\widehat{ ho}_i}^{S0}$	0		$c_i^p + \hat{c}_i^{S0}$
742	0		c_i^p	\hat{y}_i	\hat{d}_i	4	1	$\hat{c}_i^{~S1}$	${\widehat{ ho}_i}^{S1}$	0		
				7							T	
				$\hat{\overline{y}}^T$							$\widehat{\overline{y}}^{A00}$	$\widehat{\pmb{C}}^{m{A00}}$

Case	Resp	Resp	Accrued	Impute	Dist	Dist	Next	Future	Resp	Resp	Alloc	cation 0%	Alloca	ation 50%
Case	Stat	Val	Costs	RVal	$(\hat{y}_i - \hat{\overline{y}})$	Rank	Strat	Costs	Prop	Class	RVal	Cost	RVal	Cost
390	1	y_i	c_i^p	y_i							y_i	c_i^p	y_i	c_i^p
194	1	y_i	c_i^p	y_i							y_i	c_i^p	y_i	c_i^p
280	1	y_i	c_i^p	y_i							y_i	c_i^p	y_i	c_i^p
227	1	y_i	c_i^p	y_i							y_i	c_i^p	y_i	c_i^p
700	0		$_{\sigma}p$	•	\hat{d}_i	1	0	$\hat{c}_i^{\ S0}$	${\widehat{ ho}_i}^{S0}$	1	\hat{y}_i	$c_i^p + \hat{c}_i^{S0}$		
798	U		c_i^p	\hat{y}_i	u_i	1	$\hat{c}_i^{~S1}$	${\hat{ ho}_i}^{S1}$	1			\hat{y}_i	$c_i^p + \hat{c}_i^{S1}$	
578	0		c_i^p	\widehat{y}_i	\hat{d}_i	2	0	$\hat{c}_i^{\ S0}$	${\widehat{ ho}_i}^{S0}$	0		$c_i^p + \hat{c_i}^{S0}$		
370			c_i	Уі	a_l	_	1	\hat{c}_i^{S1}	$\hat{ ho_i}^{S1}$	1			\hat{y}_i	$c_i^p + \hat{c}_i^{S1}$
638	0		c_i^p	\hat{y}_i	\hat{d}_i	3	0	$\hat{c}_i^{\ S0}$	${\widehat{ ho}_i}^{S0}$	1	\hat{y}_i	$c_i^p + \hat{c_i}^{S0}$	\hat{y}_i	$c_i^p + \hat{c}_i^{S0}$
030	U	_	c_i	Уi	a_i	J	1	\hat{c}_i^{S1}	$\hat{ ho_i}^{S1}$	0				
742	0		c_i^p	ŵ	\hat{d}_i	4	0	$\hat{c}_i^{\ S0}$	${\hat{ ho}_i}^{S0}$	0		$c_i^p + \hat{c}_i^{S0}$		$c_i^p + \hat{c}_i^{S0}$
742	U		c_i	\hat{y}_i	a_i	4	1	\hat{c}_i^{S1}	$\hat{ ho_i}^{S1}$	0				
				\top							7	\top	7	
				$\widehat{ar{y}}^{m{T}}$							$\widehat{\overline{y}}^{A00}$	$\widehat{\pmb{C}}^{A00}$	$\hat{\bar{y}}^{A50}$	$21\widehat{\pmb{C}}^{m{A50}}$

Optimization Output

- Predicted responses:
 - Assuming full response target mean: \hat{y}^T
 - Different strategies: Baseline strategy: $\hat{\bar{y}}^{A00}$; Alternate strategy: $\hat{\bar{y}}^{A50}$
- RMSE for each strategy:
 - $RMSE(S^A) = (\hat{\bar{y}}^A \hat{\bar{y}}^T)^2 + Var(\hat{\bar{y}}^A)$
- Total costs for baseline and alternate strategy
 - $\hat{C}^{A00} = \sum_{i \in R} c_i^p + \sum_{i \in S} (c_i^p + \hat{c}_i^{A00})$
 - $\hat{C}^{A50} = \sum_{i \in R} c_i^p + \sum_{i \in S^{A00}} (c_i^p + \hat{c}_i^{A00}) + \sum_{i \in S^{A50}} (c_i^p + \hat{c}_i^{A50})$
- Ratios of alternate vs baseline: $\left(\frac{RMSE(S^{A50})}{RMSE(S^{A00})}, \frac{\hat{C}^{A50}}{\hat{C}^{A00}}\right)$

Decision Point #1: Replace Questionnaire with Web Invite

Decision Point #1: Week 6 Replace Questionnaire with Web Invite

Results: Data Collection Costs

	Treatment	Control	Sig.
Sample Size	8,000	8,000	
	Data Col	lection Costs	
Mean Cost-per-Case	\$26.81	\$29.57	*
Median Cost-per-Case	\$20.22	\$26.81	

^{*} $sig (\alpha = 0.05)$

Results: mean(Salary) & RMSE(Salary)

Salary Cutoff for Estimation	\$1,000,000		
Treatment Group	Treatment	Control	
% Respondents Included	100.00%	99.94%	
Mean Salary (\$)	84,082.10	84,250.02	
RMSE Salary	62,776.47	61,940.82	
Bias in Mean Salary (\$)	-167.92 (-)		
% Difference RMSE	1.35% (-)		

^{*} $sig (\alpha = 0.05)$

Results: Response Rate

	Treatment	Control	Sig.
Sample Size	8,000	8,000	
	Respo	onse Rate	
Unweighted Response Rate	57.08%	58.23%	_
Percent of Response from Web	85.92%	83.50%	*
Percent of Response from Mail	8.59%	10.32%	_
Percent of Response from CATI	5.50%	6.18%	_

^{*} $sig (\alpha = 0.05)$

Conclusions

- In our pre-experiment research, Bayesian methods led to reduced prediction error (RP, salary)
- Possible to implement:
 - Bayesian prediction models in a production setting
 - Decision framework that balances data collection costs and quality
- Positive experimental results:
 - Saved approximately 9% of data collection costs (p < 0.05)
 - Mean value of self-reported salary decreased 0.20% (ns)
 - RMSE of mean(salary) increased 1.3% (ns)
 - Unweighted response rate decreased 1.15% (ns)
 - In-line with the predicted expectations
- These methods show promise for improving data collection outcomes

Limitations and Future Work

- Consider multiple survey items
 - Experiment only focused on one survey item, salary
- Improve predictive models and utilize a fully Bayesian approach
 - Experiment was not fully Bayesian because of cost models
- Incorporate survey weights
 - Weighted mean maybe significantly different from unweighted mean
 - Weight variability can increase variance of key survey estimates

References

- [1] Wagner, J. and Hubbard, F. (2014), Producing unbiased estimates of propensity models during data collection. *Journal of Survey Statistics and Methodology*, 2, 323-342.
- [2] Schouten, B., Mushkudiani, N., Shlomo, N., Durrant, G., Lundquist, P., Wagner, J. (2018), A Bayesian Analysis of Design Parameters in Survey Data Collection. *Journal of Survey Statistics and Methodology*, 6, 431-464.
- [3] West, B.T., Wagner, J., Coffey, S., and Elliott, M.R. (revise and resubmit), The Elicitation of Prior Distributions for Bayesian Responsive Survey Design: Historical Data Analysis vs. Literature Review. Submitted to the Journal of the Royal Statistical Society (Series A), May 2019. Retrieved from https://arxiv.org/ftp/arxiv/papers/1907/1907.06560.pdf
- [4] Wagner, J., Coffey, S., Elliott, M.R., and West, B.T. (in press). Comparing the Ability of Regression Modeling and Bayesian Additive Regression Trees to Predict Costs in a Responsive Survey Design Context. *Journal of Official Statistics*.
- [5] Coffey, S., West, B.T., Wagner, J., Elliott, M.R. (2020). What Do You Think? Using Expert Opinion to Improve Predictions of Response Propensity Under a Bayesian Framework. *methods, data, analyses,* 14(2), 159-194.
- [6] Spiegelhalter, D. J., K. R. Abrams and J. P. Myles (2004), *Bayesian Approaches to Clinical Trials and Health-Care Evaluation*. Chichester; Hoboken, NJ, John Wiley & Sons.
- [7] O'Hagan, A. (2019). Expert knowledge elicitation: subjective but scientific. *The American Statistician*, 73, 69-81.

Questions?